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Program

Hörsaal 102

Hörsaal 102 Hörsaal 001

09:00 – 10:00 Registration and Welcome Coffee

10:00 – 11:10 Opening and First Plenary Talk

Solving Inverse ProblemsWithout Using Forward Operators
Barbara Kaltenbacher (University of Klagenfurt)

11:15 – 12:15 Session 1

Sara Avesani:Multiscale Scattered Data
Approximation in Samplet Coordinates

Jörg Nick:TheTemporal Domain Deriv-
ative in Inverse Acoustic Obstacle Scat-
tering

ThomasTrigoTrindade: Dynamical Low-
Rank Kalman Filtering

Andrea Angino: Data-MagicalTrust Re-
gion (DMTR): A Multi-Fidelity Optimiza-
tion Strategy for Neural NetworkTrain-
ing

Giacomo Elefante: Polynomial Interpol-
ation from Integral Data

Chiara Segala:Moment-Driven Predict-
ive Control of Mean-Field Collective Dy-
namics

12:15 – 13:30 Lunch

13:30 – 14:10 Session 2

Florian Spicher: Optimal FEM for Semi-
linear PDE with Subcritical Reactions

Mahdieh Arezoomandan: Numerical
Approximation of Stochastic Partial
Differential Equations with Fractional
Brownian Motion

PhilippWeder: Analysis-Aware Defeatur-
ing of Dirichlet Features in Poisson Prob-
lems

Benedikt Gräßle: Stable Integral Equa-
tions forAcousticTransmission in Rough
Media

14:20 – 15:00 Session 3

Bastien Chaudet-Dumas: Optimizing the
Space-Time Multigrid Algorithm

Nikita Afanasev:Active Flux Methods on
a Sphere

Jingrong Yang: Optimal Prolongation
and Restriction Operators for Space-
Time Multigrid Methods

Markus Renoldner: Analysis and Numer-
ical Analysis of AlfvénWave Equations

15:00 – 15:45 Poster Session and Coffee Break

15:45 – 16:45 Second Plenary Talk and Closing

Navier-Stokes Equations on Surfaces: Analysis and Numerical Simulations
Arnold Reusken (RWTH Aachen University)
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Abstracts

Plenary Talks

Solving Inverse Problems Without Using Forward Operators

Barbara Kaltenbacher (University of Klagenfurt)

Inverse problems generally speaking determine causes for desired or observed
effects, which has numerous applications ranging from medical imaging via non-
destructive testing to seismic prospection. Computational methods for solving
inverse problems usually rely on some kind of inversion of the mentioned cause-
to-effect map, which is also called forward operator.

However, this forward operator is often compuationally quite expensive to evaluate
or might even not be well-defined. In such cases it can help a lot to take a different
viewpoint and consider the inverse problem as a system of model and observation
equations, with both the state of the system and the searched for parameter as un-
knowns. Besides such an all-at-once approach, even more generally, reformulation
of the inverse problem as an optimization task rather than a (system of) equation(s)
allows to avoid the use of a forward operator.

A crucial aspect in the computational solution of inverse problems is their ill-
posedness in the sense that small perturbations in the given observations can lead
to large deviations in the reconstructions.To overcome this issue, regularization
methods need to be employed and we will discuss the application and adoption of
several regularization concepts to all-at-once and minimization based formulations,
in contrast to classical reduced ones.
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Navier-Stokes Equations on Surfaces: Analysis and Numerical
Simulations

Arnold Reusken (RWTH Aachen University)

In this presentation we consider a Navier-Stokes type system, posed on a smooth
closed stationary or evolving two-dimensional surface embedded in three dimen-
sional space. We briefly address modeling aspects related to this system. We
introduce the so-called tangential surface Navier-Stokes equations and discuss a
well-posed weak variational formulation of this PDE system that forms the basis for
finite element discretization methods. Furthermore we explain the basic ideas of an
unfitted finite element method, known asTraceFEM, that is used in our numerical
simulation of the tangential surface Navier-Stokes system. Results of numerical
experiments with this method are presented that illustrate how lateral flows are
induced by smooth deformations of a material surface.
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Contributed Talks

Multiscale Scattered Data Approximation in Samplet Co-
ordinates

Sara Avesani (Università della Svizzera Italiana)

The talk is based on joint work with: M. Multerer (USI), R. Kempf (University of
Bayreuth), and H.Wendland (University of Bayreuth).

We study multiscale scattered data interpolation schemes for globally supported
radial basis functions with focus on the Matérn class.The multiscale approxima-
tion is constructed through a sequence of residual corrections, where radial basis
functions with different lengthscale parameters are combined to capture varying
levels of detail, as introduced in [1].We prove that the condition numbers of the
diagonal blocks of the corresponding multiscale system remain bounded indepen-
dently of the particular level, allowing us to use an iterative solver with a bounded
number of iterations for the numerical solution.To apply the multiscale approach
to large data sets, we suggest to represent each level of the multiscale system
in samplet coordinates. Samplets are localized, discrete signed measures exhib-
iting vanishing moments and allow for the sparse approximation of generalized
Vandermonde matrices issuing from a vast class of radial basis functions, see [2].
Given a quasi-uniform set of N data sites, and local approximation spaces with
exponentially decreasing dimension, the samplet compressed multiscale system
can be assembled with cost O(N log2 N ).

[1] H.Wendland. Multiscale analysis in Sobolev spaces on bounded domains. J.
Numer. Math., 116:493–517, 2010, Springer.

[2] H. Harbrecht, and M. Multerer. Samplets: Construction and scattered data
compression. J. Comput. Phys., 471:111616, 2022, Elsevier.

Dynamical Low-Rank Kalman Filtering

ThomasTrigoTrindade (EPFL)

The talk is based on joint work with: F. Nobile (EPFL).

Data Assimilation consists in combining one’s model knowledge with a stream
of data in order to improve the prediction of the system state. Two successful
outlets of that approach are given by the Kalman-Bucy filter and its particle-based
analog, the Ensemble Kalman filter.While the former describes the exact filtering
density evolution in the case of linear and Gaussian dynamics, in practice the latter
is often used in real-world applications such as climate or geosciences, as it is
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computationally tractable and applicable to non-linear settings. Despite the intrinsic
low-rank structure many real-life systems seem to present, using a small number
of particles might lead to significant Monte-Carlo error and stochastic fluctuations.
We propose a principled model order reduction of the Kalman-Bucy filter (KBF)
by way of the Dynamical Low-Rank (DLR) Approximation method, mimicking a
time-evolving truncated Karhunen-Loeven approximation of the filtering density.
In essence, leveraging the low-rank structure of the filtering density allows to
evolve (an approximation of) it in a dynamically evolving subspace, at reduced
computational cost. Under certain assumptions, our framework preserves well-
known properties of the KBF (including mean and covariance characterisation), and
we also establish error bounds between the true and reduced order model.We also
propose a DLR extension of the Ensemble Kalman filter, and show a propagation
of chaos property to its rank-reduced mean-field limit. Numerical results confirm
the predicted properties and the effectiveness of the method.

[1] F. Nobile,T.TrigoTrindade. Dynamical Low-Rank Kalman Filtering, (in prepara-
tion).

Polynomial Interpolation from Integral Data

Giacomo Elefante (Università della Svizzera Italiana)

The talk is based on joint work with: L. Bruni Bruno (University of Padova).

This work focus on polynomial interpolation with data collected as integral on
compact regions instead of single points.We investigates conditions that ensures
the existence and uniqueness of solutions, demonstrating that the position of these
regions play a key role for well-posedness.

We, then, analyze the stability of this method, deriving a Lebesgue constant-like
quantity. After analyzing some of its features, such as invariance properties and
sensitivity to support overlapping, we numerically verify the theoretical findings.

The Temporal Domain Derivative in Inverse Acoustic Obstacle
Scattering

Jörg Nick (ETH Zürich)

The talk is based on joint work with: M. Knöller (University of Helsinki).

The talk discusses the domain derivative for a time-dependent acoustic scattering
problem.We study the nonlinear operator that maps a sound-soft scattering object
to the solution of the time-dependent wave equation evaluated at a finite number of
points away from the obstacle.The Fréchet derivative of this operator with respect to
variations of the scatterer coincides with point evaluations of the temporal domain
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derivative.The latter is the solution to another time-dependent scattering problem,
for which a well-posedness result is shown under sufficient temporal regularity of
the incoming wave. Applying convolution quadrature to this scattering problem
gives a stable and provably convergent semi-discretization in time, provided that
the incoming wave is sufficient regular. Using the discrete domain derivative in
a Gauss–Newton method, we describe an efficient algorithm to reconstruct the
boundary of an unknown scattering object from time domain measurements in a
few points away from the boundary. Numerical examples for the acoustic wave
equation in two dimensions demonstrate the performance of the method.

[1] M. Knöller and J. Nick The temporal domain derivative in inverse acoustic
obstacle scattering, SAM Research Report, 2024.

Data-Magical Trust Region (DMTR): A Multi-Fidelity Optimiz-
ation Strategy for Neural Network Training

Andrea Angino (UniDistance Suisse)

In recent years, multi-fidelity optimization has gained significant attention, particu-
larly in areas characterized by complex and expensive objectives, such as neural
network training.

This work presents a novel adaptation of the MagicalTrust Region (MTR) method,
termed Data-MagicalTrust Region (DMTR), which can be applied broadly in settings
where a dataset is available and feature extraction is feasible; neural network
training is considered as one representative application.The distinctive feature of
this approach lies in a secondary search direction that exploits a computationally
efficient surrogate of the full objective function.

Unlike methods that rely solely on mini-batch evaluations of the loss, this direction
is constructed through a feature extraction process applied to the dataset, which
serves as the basis for the surrogate model.This enables the algorithm to capture
relevant structural information cost-efficiently. As a result, the method enhances
both the adaptability and the effectiveness of the optimization process during clas-
sifier training.We demonstrate the performance of DMTR across several datasets,
highlighting consistent improvements over standard optimization strategies.

Moment-Driven Predictive Control of Mean-Field Collective
Dynamics

Chiara Segala (Università della Svizzera Italiana)

The talk is based on joint work with: G. Albi (University of Verona), M. Herty (RWTH
Aachen University), and D. Kalise (Imperial College London).

We address the problem of designing feedback control strategies for large-scale
systems of interacting agents governed by nonlinear collective dynamics. Starting
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from a classical agent-based model with nonlocal interactions, we consider its
mean-field limit and propose amethodology that combines linearization techniques
with the solution of matrix Riccati equations to obtain suboptimal feedback controls.
These are embedded in a nonlinear model predictive control framework, where
control updates are driven by macroscopic quantities—in particular, the first and
second moments of the agent distribution.

Our approach circumvents the computational challenges associated with synthes-
izing optimal feedback laws for high-dimensional nonlinear systems, such as the
intractability of the Hamilton–Jacobi–Bellman equation. Instead, we construct a
feedback law for a suitably linearized mean-field model, and iteratively update
it using dynamic information about the evolution of the moments.This yields a
control strategy that is efficient, scalable, and robust to partial observations of the
system state.

We provide theoretical performance estimates that guide the choice of linearization
points and control update frequency. Numerical experiments demonstrate the ef-
fectiveness of our method in stabilizing self-organizing dynamics, with applications
ranging from opinion formation to alignment in collective motion.

[1] G. Albi, M. Herty, D. Kalise, and C. Segala. Moment-Driven Predictive Control
of Mean-Field Collective Dynamics. SIAM Journal on Control and Optimization,
60(2):814–841, 2022.

[2] G. Albi and L. Pareschi. Binary interaction algorithms for the simulation of
flocking and swarming dynamics. Multiscale Modeling & Simulation, 11:1–29,
2013.

[3] M. Herty, L. Pareschi, and S. Steffensen. Mean–field control and Riccati equa-
tions. Networks and Heterogeneous Media, 10:699–715, 2015.

Optimal FEM for Semilinear PDE with Subcritical Reactions

Florian Spicher (Universität Bern)

The talk is based on joint work with:Thomas P.Wihler (Universität Bern).

In this talk, we present a fully rigorous and implementable finite element framework
for solving semilinear elliptic boundary value problems

−∆u + g (·,u) = f in Ω ⊂ Ò2, u |ΓD = 0, ∂nu |ΓN = 0,

where f ∈ Lp (Ω) (1 < p < ∞) and the nonlinearity g is continuously differentiable,
monotone and its derivative exhibits exponential growth.

The focus of our presentation is on an optimal a priori error estimate for a con-
tractive Picard type iteration scheme on meshes that are locally refined towards
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possible corner singularities in polygonal domains. Our analysis involves, in par-
ticular, an elliptic regularity result in weighted Sobolev spaces and the use of the
Trudinger inequality, which is instrumental in dealing with subcritically growing
nonlinearities.

[1] F. Spicher andT. P.Wihler. Optimal finite element approximations of monotone
semilinear elliptic PDE with subctitical nonlinearities, 2025. arXiv preprint,
arXiv:2504.11292.

Analysis-Aware Defeaturing of Dirichlet Features in Poisson
Problems

PhilippWeder (EPFL)

The talk is based on joint work with: A. Buffa (EPFL).

Geometry simplification, or defeaturing, is essential for industrial simulations.
Defeaturing not only simplifies the meshing process, but also lowers the computa-
tional cost of the subsequent simulation since it reduces the number of degrees of
freedom. Standard defeaturing methods typically use geometric criteria, ignoring
the problem’s physics. Analysis-aware defeaturing addresses this through a pos-
teriori error estimation, combining the defeatured simulation output and the exact
geometry information to guide the defeaturing process.

Let Ω ⊂ Òn , n ∈ {2, 3} be the exact domain and Ω0 ⊃ Ω its defeatured version. Let
u ∈ V and u0 ∈ V0 be solutions to a PDE on Ω and Ω0 in suitable Hilbert spacesV and
V0, respectively.The defeaturing error e := u − (u0) |Ω is estimated via | |e | |V ≤ CE(u0),
where C > 0 is a constant independent of the feature size.

A rigorous framework was introduced in [1] for the Poisson problem and extended
to linear elasticity and Stokes flow in [2]; for a comprehensive overview of the
topic see [3]. However, existing work assumes Neumann boundary conditions on
features and only quantifies the defeaturing error in terms of the energy norm
associated with the PDE problem.

We present reliable a posteriori estimators for the Poisson problem with Dirichlet
conditions on negative interior or boundary features (γ).We establish reliability for
the estimators in terms of the energy norm depending on the boundary conditions
and geometry:

EDD(u0) :=
√
2| |dγ | |0,γ | |+tdγ | |0,γ,

EDN(u0) :=
√
2| |dγ | |0,γ − dγ

γ | |+tdγ | |0,γ + |γ |
n−2

2(n−1) |dγ
γ |,

Eint(u0) := 2

√
| |dγ | |0,γ − dγ

γ | |+tdγ | |0,γ + c̄γ |dγ
γ |,

where dγ := e |γ is the error trace on the feature boundary. Based on these error
estimates in terms of the energy norm and the dual weighted residual method
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(DWR) [4], we also derive reliable defeaturing estimates in terms of linear func-
tionals of the solution u . Finally, we provide numerical examples in 2D and 3D to
demonstrate the validity and efficiency of the proposed estimators.

[1] A. Buffa, O. Chanon, and R. Vázquez. Analysis-aware defeaturing: Problem
setting and a posteriori estimation. Mathematical Models and Methods in
Applied Sciences, 32(02):359–402, 2022.

[2] P. Antolín and O. Chanon. Analysis-aware defeaturing of complex geomet-
ries with Neumann features. International Journal for Numerical Methods in
Engineering, 125(3):e7380, 2024.

[3] O. G. Chanon. Adaptive analysis-aware defeaturing. PhD thesis, EPFL, 2022.

[4] R. Becker and R. Rannacher. An optimal control approach to a posteriori error
estimation in finite element methods. Acta Numerica, 10:1–102, 2001.

Numerical Approximation of Stochastic Partial Differential
Equations with Fractional Brownian motion: Simulation and
Optimal Convergence

Mahdieh Arezoomandan (Université de Genève)

The talk is based on joint work with: A. R. Soheili (Ferdowsi University of Mashhad).

Fractional Brownian motions (fBms) are important classes of stochastic processes,
exhibiting unique properties such as self-similarity, long-range dependence, and
non-Markovian behavior.These properties distinguish fBm from classical Brownian
motions, introducing challenges that make their numerical treatment of stochastic
equations more challenging.

In this talk, we investigate the numerical approach to stochastic parabolic equations
driven by infinite dimensional fBms.To achieve this, we employ a finite element
method for spatial discretization and a fully implicit backward Euler method for
temporal discretization. Our main aim is to obtain optimal strong convergence
error estimates in the mean-square sense, which is crucial for understanding the
behavior and efficiency of the numerical schemes used in this context [1].

In addition, we will focus on the linear stochastic Cahn-Hilliard equation with
fractional Brownian motions and present our findings for this specific case [2].

[1] M. Arezoomandan and A.R. Soheili, Finite element approximation of linearize
stochastic Cahn-Hilliard equations with fractional Brownian motion. Math.
Comput. Simul., 215:122–145, 2024.

[2] M. Arezoomandan and A.R. Soheili. Spectral collocation method for stochastic
partial differential equations with fractional Brownian motion. J. Comput. Appl.
Math., 389 :113369, 2021.
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Stable Integral Equations for Acoustic Transmission in Rough
Media

Benedikt Gräßle (Universität Zürich)

The talk is based on joint work with: R. Hiptmair (ETH Zürich) and S. Sauter (Uni-
versität Zürich).

A novel variational formulation of layer potentials and boundary integral operators
generalizes their classical construction based on Green’s functions. Unlike classical
approaches, our method applies even when Green’s functions are not explicitly
available, such as for Helmholtz problems with rough (e.g., piecewise Lipschitz)
coefficients.Wave-number explicit estimates and properties like jump conditions
are obtained directly from the variational definition.This enables a nonlocal (in-
tegral) formulation of acoustic transmission problems in heterogeneous media.
The well-posedness of the resulting boundary integral equations is inherited from
the underlying partial differential equation. Our analysis treats general spatial di-
mensions and complex wave numbers simultaneously by imposing an artificial
boundary and exploiting new insights into the associated Dirichlet-to-Neumann
map.

Optimizing the Space-Time Multigrid Algorithm

Bastien Chaudet-Dumas (HES-SO Haute école spécialisée de Suisse occi-
dentale)

The talk is based on joint work with: M. J. Gander (Université de Genève) and
A. Pogozelskyte (Université de Genève).

For time-dependent problems, Parallel-in-Time (PinT) algorithms allow us to par-
allelize problems in the time dimension when space parallelization alone creates
communication bottlenecks. Parareal and Multigrid Reduction-in-Time (MGRIT) are
two examples of such PinT algorithms based on multigrid techniques, but they are
not truly scalable since they coarsen the problem only in the time dimension.

We will focus on a more intrusive method: the Space-Time Multigrid algorithm
with block-Jacobi relaxation introduced by Gander and Neumüller.This algorithm
provides excellent scalability for parabolic problems up to millions of cores, while
still being equally as fast as forward substitution on one core only.

We will show that the performance of this algorithm can be further improved by the
optimization of the smoothing parameters.This will allow the algorithm to be up
to twice as fast as the original one. Results will be presented for the heat equation
discretized with Backward Euler.
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Optimal Prolongation and Restriction Operators for Space-
Time Multigrid Methods

JingrongYang (Université de Genève, Jilin University)

The talk is based on joint work with: Martin J. Gander (Université de Genève).

The performance of space-time multigrid methods is influenced not only by the
smoother but also by the prolongation and restriction operators, as one can see
from numerical results. This observation motivates our investigation to derive
optimal prolongation and restriction operators, in the sense of leading to a direct
solver, i.e. convergence in a single iteration.This is then followed by introducing
approximations to specific components to enhance computational efficiency. By
exploiting the structure of the temporal evolution equation, where information
propagates only forward in time, and drawing inspiration from cyclic reduction
methods for scalar ODEs, we derive exact prolongation and restriction operators.
In this context, the transmission of information from the fine to the coarse grid
and back can be viewed as a type of transmission condition, which is the core
component of our methodology.We analyze the parallel computational complexity
associated with various approximation strategies and compare our method with
existing space-time multigrid approaches, such as those employing a Block Jacobi
smoother and MGRIT.While our method shares similarities with these approaches,
it also exhibits significant differences, which will be discussed in detail during the
presentation.

Active Flux Methods on a Sphere

Nikita Afanasev (Universität Zürich)

The talk is based on joint work with: R. Abgrall (Universität Zürich).

In recent years, Active Flux method, first introduced byT. Eymann and P. Roe [1],
has been adapted to solve many problems for hyperbolic systems of PDEs on
orthogonal [2] and polygonal [3] meshes. Typically, in Active Flux two types of
mesh variables are used: cell averages and point values at nodes and edges of the
mesh (in 2D planar case).The evolution of cell averages is approximatedwith a finite
volume scheme for conservative form of hyperbolic equations, and the evolution
of point values is handled with a finite difference scheme for the characteristic
form of equations. In such way, both conservative and characteristic nature of the
equations is captured in the numerical method.

In this talk, we introduce the generalization of Active Flux method on triangular
meshes [3] to hyperbolic problems on a sphere. For the finite volume part, we
follow [4] to rewrite the fluxes using the tangent vectors instead of normals to get
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a geometry-compatible scheme. For the point values update part, we use local pro-
jections of spherical triangles [5] and introduce a quasi-polynomial reconstruction
of mesh functions on planar projected triangles to find the gradients. Some tests
for linear hyperbolic problems on a sphere are demonstrated. It is worth noting
that the use of local projections allows to generalize this method to problems on
an arbitrary manifold.

[1] W. Barsukow, J. Hohm, C. Klingenberg, P.L. Roe. The active flux scheme on
Cartesian grids and its low Mach number limit. J. Sci. Comput. 81:594–622,
2019.

[2] T.A. Eymann, P.L. Roe. Active flux schemes. AIAA, 382, 2011.

[3] R. Abgrall, J. Lin andY. Liu. Active flux for triangular meshes for compressible
flows problems. arXiv, 2024.

[4] M. Ben-Artzi, J. Falcovitz and P. LeFloch. Hyperbolic conservation laws on the
sphere. A geometry-compatible finite volume scheme. Journal of Computa-
tional Physics, 228:5650–5668, 2009.

[5] M. Baldauf. Discontinuous Galerkin solver for the shallow-water equations
in covariant form on the sphere and the ellipsoid. Journal of Computational
Physics, 410:109384, 2020.

Analysis and Numerical Analysis of Alfvén Wave Equations

Markus Renoldner (EPFL)

The talk is based on joint work with: A. Buffa (EPFL),T. Miehling (EPFL), M. Picasso
(EPFL), and P. Ricci (EPFL).

Turbulence phenomena in plasma physics have recently attracted the interest of
many researchers, due to its theoretical challenges as well as its pivotal role in
fusion energy reserach. Shear Alfvén waves, described by a coupled system of
partial differential equationss, capture the fastest oscillatory dynamics within the
drift-reduced Braginskii equations.The latter model plasma fluids in high turbulence
regimes subject to strongly anisotropic external forces, such as those in magnetic
confinement fusion [1]. Our work addresses the well-posedness and numerical
analysis of Alfvén waves.We first discuss their unintuitive dispersion relation.We
prove existence, uniqueness and stability of weak solutions in the natural energy
norm. In order to achieve this, we introduce anisotropic Sobolev spaces [2, 3],
which constitute a natural setting for solutions to the Shear Alfvén wave equations.
Additionally, we propose a Finite Element discretization and prove a priori error
estimates and energy conservation properties. Numerical example computations
are presented to validate our theoretical results.
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[1] F.D. Halpern, P. Ricci, S. Jolliet, J. Loizu, J. Morales, A. Mosetto, F. Musil, F. Riva,
T.M.Tran, C.Wersal. The GBS code for tokamak scrape-off layer simulations.
Journal of Computational Physics, 315:388–408, 2016.

[2] J. Pousin, P. Azerad. Inégalité de Poincaré courbe pour le traitement variationnel
de l’équation de transport. Comptes Rendus de l’Académie des Sciences,
322(1):1–6, 1996.

[3] A. Maione. Variational convergences for functionals and differential operators
depending on vector fields. Thesis submitted to the University ofTrento for
the degree of Doctor of Philosophy, Department of Mathematics. University of
Trento, October 2020. Supervisors: F. Serra Cassano and A. Pinamonti.
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